Wood Nanotechnologies for Transparency, Fire Retardancy and Liquid Separation
نویسندگان
چکیده
In this thesis, wood nanotechnologies for transparent, fire-retardant and hydrophobic/lipophilic wood have been developed. There are two main parts; wood template preparation/processing concepts and materials design using these templates. In the wood template processing part, highly porous nanostructured wood templates are prepared. Relationships between processes and material structures are studied. Three chemical treatment methods are used. Lignin and/or chromophores are removed from cell wall, so that nanoscale pores are formed in the cell wall. For preparation of transparent wood, a lignin-retaining method improves physical properties of the template. The pore structures are characterized by scanning electron microscopy and gas adsorption measurement of specific surface area. The compositions of the templates are characterized. Compared with native wood, these templates have nanoscale porosity which provides opportunity for new types of wood modification. In the materials design part, wood nanotechnologies are used for transparent wood as well as for hydrophobic/lipophilic and fire-retardant wood. Two main strategies are used: i) nanoparticles are embedded inside the cell wall; ii) polymers are impregnated in lumen space, and sometimes also inside the cell wall. The transparent wood is prepared by MMA monomer/oligomer impregnation of lumen space. MMA has similar refractive index to the delignified template, so that scattering is reduced and transparent wood with favorable optical and mechanical properties is obtained. The structure and functional properties are studied. Laminated transparent plywood is designed to modify mechanical properties. Transparent wood and transparent plywood are demonstrated in applications combining loadingbearing properties with optical performance such as luminescent properties. The highly porous wood template cell walls are also impregnated with colloidal montmorillonite clay or epoxy/amine solutions to modify the cell wall and form nanostructured biocomposites. The structure and properties of the two materials are investigated; wood/clay hybrids for flame-retardancy and wood/epoxy biocomposites for oil/water separation.
منابع مشابه
A novel method for manufacturing of wood flour/PP composites with better fire retardancy and mechanical properties
This study was conducted to investigate the effects of applying methods andamount of ammonium polyphosphate (0, 2 and 4 wt%) on fire retardancy andmechanical properties of wood flour/polypropylene composites. The resultsshowed that addition of fire retardant improved the mechanical properties such astensile and flexural strengths and fire retardancy of composites. But by increasingof fire retar...
متن کاملThe optimum level of nano-wollastonite consumption as fire-retardant in poplar wood (Populus nigra)
Fire-retarding properties of wollastonite nanofibers in poplar wood (Populus nigra) were studied here. Some physical properties such as water absorption, volumetric swelling and anti-swelling efficiency (ASE) were also measured. Specimens were prepared according to the ISO 11925 specifications for the fire-retarding properties and according to the ASTM D4446 -2002 specifications for th...
متن کاملThe optimum level of nano-wollastonite consumption as fire-retardant in poplar wood (Populus nigra)
Fire-retarding properties of wollastonite nanofibers in poplar wood (Populus nigra) were studied here. Some physical properties such as water absorption, volumetric swelling and anti-swelling efficiency (ASE) were also measured. Specimens were prepared according to the ISO 11925 specifications for the fire-retarding properties and according to the ASTM D4446 -2002 specifications for th...
متن کاملNanotechnology in Wood-based Composite Panels
Wood is a naturally renewable material with both continuous and isolated pore systems. Wood-composite panels have the privilege of offering a homogeneous structure to be used as constructional and structural materials. However, its nature makes it susceptible to biological wood-deteriorating agents, water absorption and thickness swelling, fire, etc. Using nano-materials are very easy in the wo...
متن کاملImpregnation of Preservative and Fire Retardants into Japanese Cedar Lumber by Passive Impregnation
Copper azole type B (CAz-B) preservative and polyphosphatic carbamate (PPC) fire retardants were impregnated in succession into green (97% MC) and kiln-dried (18% MC) Japanese cedar (Cryptomeria japonica (L.f.) D.Don) lumber by the passive impregnation method to prolong the period of lumber use by increasing its resistance to fire and biological degradation. Lumber was dried with a kiln or by a...
متن کامل